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Hydrodynamic Limit for an Arc Discharge at
Atmospheric Pressure
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In this paper we study a partially ionized plasma that corresponds to an arc
discharge at atmospheric pressure. We derive an inviscid hydrodynamic/diffu-
sion limit, characterized by two temperatures, from a system of Boltzmann
type transport equations modelling that plasma problem. The original property
of this system is that impact ionization is a leading order collisional process. As
a consequence, the density of electrons is given in terms of the density of the
other species (and its temperature) via a Saha law.
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1. INTRODUCTION

The scientific study of electric discharges started during the 18th cen-
tury with the experimental observation of sparks produced by electrostatic
generators and thunderstorms lightnings. The modelling of a discharge
(a glow discharge in uniform field) was first investigated in the early 1900s
by Townsend, also Stark. Nowadays there exists a large variety of electric
discharges used for many industrial applications. Here, we will focus on
a specific one: the arc discharge at atmospheric pressure. It can be pro-
duced with moderate voltage of some Volts, or characterized by a low cur-
rent of the order of one Ampère. Its fluid dynamic and thermal effects are
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dominant, allowing many applications based on energy transfer. Among
them are transferred arcs used in metallurgy to cut, melt or weld; their
power lies within the range 102 to 104 W. Another important application
field concerns plasma torches used to spray protective coatings (for a bet-
ter resistance to wear, corrosion, oxidation, thermal fluxes, also for elec-
tric or electronic purposes and bio-compatibility) or vitrify toxic wastes for
instance; their power can go from 102 up to 105 W.

The modelling of arc discharges covers a wide range of complex phys-
ical phenomena (electric, magnetic, thermal, chemical, and fluid dynamic
effects) occurring in different regions of the arc and, moreover, involving
different scales. An arc is usually modelled dividing it into a thermal
plasma column (which represents the main body) surrounded by elec-
trode layers. From the cathode surface, the boundary layer includes first
a very thin space charge zone of the order of one electron mean free
path ( or ≈ 10−6 m for the Argon arc of 200 A and 1700 W studied
in ref. 1 for instance) where the transition between metallic and gaseous
conduction is done. The number of collisions in this sheath is negligi-
ble; there is thus no local thermodynamic equilibrium, no ionization and
no recombination. There, ions are freely accelerated towards the cathode,
and their collision with the metallic surface results in thermionic emis-
sion of electrons. A considerable current is thus built up by these ions,
supplemented by thermionic and secondary electrons as well as electrons
counter-diffusing against the electric field of the sheath. During their accel-
eration across the sheath, towards the pre-sheath, the emitted electrons can
acquire a kinetic energy larger than the ionization threshold of the plasma
gas.

In the next sub-layer of the boundary, or pre-sheath, ionization dom-
inates over recombination. This ionization zone does the link with the
plasma column. Its thickness is of the order of the recombination length
(or ≈ 10−4 m for the previous example,(1)). For an arc discharge, e.g. a
weakly ionized plasma, the recombination length is much larger than the
mean free path. The ionization zone is thus in local thermal equilibrium.
But this equilibrium is partial: the electron temperature is almost twice
larger than the heavy particle temperature. As the Debye length (≈10−5 m
concerning the example of ref. 1) is also less than the ionization mean free
path, the pre-sheath is quasi-neutral.

The anode layer can also be divided into a sheath and pre-sheath
structure, although the distribution of the electric potential differs. The
sheath is also characterized by a deviation from local thermodynamic
equilibrium. There the temperature of heavy particles accommodates with
the anode surface temperature, while the electron temperature remains
large enough to ensure electrical conductivity. The modelling of this part is
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generally developed doing simplifying assumptions suited to the numerical
simulation of specific applications. For instance stationary with cylindrical
symmetry for tungsten inert gas (TIG) welding arcs as in ref. 2 or
non-stationary and 3-dimensional for plasma spraying arcs as in ref. 3. In
that later case the arc attachment may move under the combined influence
of the gas flow and Lorentz forces, inducing variations of the arc length
and thus the arc voltage.

The plasma column is the most extended part of the arc, of the order
of 10−2 m. It is thus in local thermal equilibrium (generally partial) and
free of space charge, i.e. quasi-neutral. In this zone, both ionization and
recombination occur.

As the treatment of the boundary conditions is a critical issue for
numerical applications, most of the recent developments on the modelling
of arc discharges are focussed on improved descriptions of sheath and pre-
sheath, as in refs. 4 and 5 for instance. These authors start from funda-
mental physical principles to set-up consistent models for the various parts
of the arc discharge, mentioned above. In refs. 3 and 6 the plasma col-
umn is modelled using the Navier–Stokes equations for one fluid in the
presence of electro-magnetic forces. On the other hand, in ref. 5 a two
temperature mixture is considered, but both temperatures and pressure are
supposed to be given and the Saha law (as a function of the electron tem-
perature) is used jointly with the ideal gas law to calculate the particle
densities. Concerning the pre-sheath, refs. 3 and 6 do not make any dis-
tinction with the plasma column. Most of the recent models specifically
developed for the ionization pre-sheath are directly derived from fluid
equations rather than from the kinetic scale. They consider, as in ref. 5,
a mixture of ions, electrons and neutrals characterized by two tempera-
tures (one for electrons, one for heavy particles) and ionization reactions.
There exist a model derived from kinetic theory in ref. 1 to establish mass
and energy conservation equations assuming a steady flow, charge neu-
trality and equilibrium composition. It is based on the formulation of the
electron diffusion flux proposed by Devoto.(7) This formulation is derived
assuming that the electron Boltzmann equation can be decoupled from the
heavy species Boltzmann equations and using a modified version(8) of the
Chapman–Enskog method.(9)

In this study, we start from the kinetic scale to derive a macroscopic
hydrodynamic/diffusion limit suited to the modelling of both the plasma
column and the pre-sheaths (or ionization layers) of an atmospheric arc
discharge. We will see in the sequel that the coupling between electrons
and heavy species plays a major role. The framework is as follows: we con-
sider a weakly ionized plasma, assume partial local thermal equilibrium
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and quasi-neutrality. We also account for impact ionization and recom-
bination, and neglect radiative ionization and recombination (that get
significant for high pressure discharges). We thus investigate a partially
ionized plasma whose electrons, ions and neutral molecules are subject to
elastic binary collisions as well as impact ionization and its reverse recom-
bination reaction. The activation energy ∆ of ionization reactions is sup-
posed to be constant and given by the impacting electron. We also assume
that the ionization level lies within the range 10−3 to 10−1, which corre-
sponds to an arc discharge problem.

Let us recall that the derivation of hydrodynamic/diffusion limits for
a binary plasma gas mixture can be found in ref. 10 for instance. The ter-
nary gas mixture corresponding to a very weakly ionized plasma, such as
a glow discharge where ionization occurs very seldom, is studied in ref. 11.
A problem with dominant impact ionization and its reverse recombina-
tion is investigated in refs. 12, 13 within the frame of semiconductors. An
important difference compared to the present study is due to the masses of
the charged particles of opposite sign: they have the same order of mag-
nitude for semiconductors while they differ by orders of magnitude for
plasma applications.

We start this study from a system of Boltzmann type transport equa-
tions governing the distribution functions of electrons, ions and neutral
molecules. This system, presented in Section 2, is coupled through col-
lision operators that involve three collisional processes: (i) elastic binary
collisions where at least one particle is neutral (Boltzmann), (ii) elas-
tic binary collisions between charged particles (Fokker–Planck), and (iii)
inelastic collisions with impact ionization and its reverse recombination.
This system is scaled in Section 3, based on its two small parameters.
The first parameter ε measures the relative smallness of the electron mass
with respect to the neutral particles. The second parameter δ measures
the ionization level of the plasma. For an arc discharge we have δ ≈ ε.
The main consequence of this scaling is that impact ionization gets a
leading order collisional process. Section 4 is devoted to some prepara-
tory results concerning the leading order collision operators. A macro-
scopic limit is then presented in Section 5, while the proofs are detailed
in Section 6. The two main results are contained in Theorem 5.1, where
the equilibrium states and the Saha law are derived, and in Theorem 5.6
for our hydrodynamic model with two temperatures. We observe that it
presents some differences compared to the models mentioned above. Part
of these differences already appear with the inviscid fluid limit we propose
to derive in this paper. The viscous case is the object of a forthcoming
study.(14)
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2. A SYSTEM OF KINETIC EQUATIONS MODELLING AN ARC

DISCHARGE

We study a partially ionized gas whose electrons, ions and neutral
molecules are subject to elastic binary collisions as well as ionization and
recombination reactions. To that purpose, we assume that:

Assumption 2.1. The external forces applied to the particles do not
depend on the velocity variable, excluding thus magnetized plasmas.

Assumption 2.2. The interaction potentials associated with the non-
reactive collisions only depend on the distance between the particles.

Assumption 2.3. Radiative ionization and recombination are negligi-
ble, excluding thus very high pressure arc discharges.

Assumption 2.4. The activation energy of impact ionization reactions
is given by the electron, and not by a heavy particle.

Assumption 2.5. The charge level of ions is of order one.

Notice that relaxing condition 2.1, we will make a more general case in
the last remark of Section 5.

To avoid as much as possible confused notations, we restrict the pre-
sentation of this study to a single neutral species and the related single
charged ion species. The extension of the forthcoming results to several
molecular species characterized by masses of similar order of magnitude,
and to ions of charge Z<10 is indeed straightforward.

We thus investigate the following system of kinetic equations:

∂tf
e+ve ·∇xf e+ Fe

me
·∇vef e= (∂tf e)c,

∂tf
i +vi ·∇xf i + Fi

mi
·∇vi f i = (∂tf i)c,

∂tf
n+vn ·∇xf n+ Fn

mn
·∇vnf n= (∂tf n)c.

(1)

The indexes e, i and n denote quantities associated with electrons,
ions and neutral particles, respectively. The distribution functions f α =
f α(t, x, vα), where α = e, i, n, depend on time t � 0, space x ∈ IR3 and
velocity vα ∈ IR3. The force terms Fα represent the external forces acting
on the particle α of mass mα; it satisfies the Assumption 2.1.

The system of equations (1) is coupled through the source terms
(∂tf

α)c which modelize the collisions between particles. These operators
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involve three collisional processes detailed below: (i) elastic binary colli-
sions where at least one particle is neutral, (ii) elastic binary collisions
between charged particles, and (iii) inelastic collisions with ionization and
its reverse recombination. Thus

(
∂tf

α
)
c
=Qαα(f α, f α)+Qαβ(f α, f β)+Qαγ (f α, f γ )+Qα,ir (f α, f β, f γ ),

(2)

where the superscript ir stands for ionization-recombination, and α,β, γ =
e, i, n with α �=β �=γ �=α.

Let us first consider binary elastic collisions between the two particles
α and β. When one of these particles (or both) is neutral, the binary col-
lisions are described by Boltzmann operators of the form:

Qαβ(f α, f β)(vα)=
∫

IR3×S2+
σB
αβ |vα−v	β |

(
f α
′
f
β
	

′ −f αf β	
)
dv	βd
, (3)

where α=n and β= e, i, n or α= e, i, n and β=n. In this expression, vα
[resp. v	β ] is the velocity of particle α [resp. β] before collision, and f α

[resp. f β	 ] denotes: f α=f α(t, x, vα) [resp. f β	 =f β(t, x, v	β)]. The post-col-
lisional velocities vα ′ and v	β

′ are defined from the pre-collisional velocities
vα and v	β by

vα
′=vα−2

µαβ

mα

(
(vα−v	β)·


)

 and v	β

′=v	β +2
µαβ

mβ

(
(vα−v	β)·


)

,

(4)

where µαβ =mαmβ/(mα +mβ) is the reduced mass, and 
 ∈ S2+ denotes

a unit vector of part of the unit sphere S2 of IR3 defined by S2+ :=
{

∈

S2; (vα−v	β) ·
>0
}

. The notations f α ′ and f β	
′

stand for f α(t, x, vα ′) and

f β(t, x, v	β
′), respectively.

From Assumption 2.2, the scattering cross section σB
αβ is a function

of two variables:

σB
αβ =σB

αβ (E, χ) ,

where E =µαβ |vα − v	β |2 is the reduced kinetic energy and χ denotes the

angle
(
vα−v	β
|vα−v	β | ,


)
. While the former belongs to IR+, the latter lies within

the range [0,1].
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Elastic collisions between two charged particles α and β are modelled
by Fokker–Planck–Landau operators:

Qαβ(f α, f β)(vα)=
µ2
αβ

mα
∇vα ·

[∫

IR3
σF
αβ |vα−v	β |3 S(vα−v	β)

×
( 1
mα
∇vαf αf β	 −

1
mβ
∇v	β f

β
	 f

α
)
dv	β

]
,

where α,β = e, i and ∇vαf α = (∇f α)(vα), while S(w) denotes the matrix
S(w)= Id− w⊗w

|w|2 , Id being the identity matrix. Here, due to Assumption

2.2, the scattering cross section for grazing collisions σF
αβ only depends on

the reduced kinetic energy:

σF
αβ =σF

αβ (E) .

From Assumption 2.3, radiative ionization and recombination are sup-
posed to be negligible. The ionization process we consider is thus impact
ionization. Its mechanism can be schematized by the following direct and
reverse reactions:

e+A −→σd e + e + A+ and e+A ←−σ r e + e + A+, (5)

where e represents an electron, A+ a single charged ion, and A the related
neutral atom. σd and σ r stand for the direct and reverse reaction cross
sections. They are supposed to be positive. Applying the principle of
detailed balance, we assume in the sequel that these cross sections are
linked through

σd =F0 σ
r, (6)

where F0 is a positive constant, which represents the efficiency of the dis-
sociation with respect to the recombination. The ionization-recombination
operators are then given by

Qe,ir (f e, f i, f n)(ve)=
∫

IR12
σ rδvδE

(
f e
′
f e	 f

i −F0f
ef n

)
dve
′ dv	e dvi dvn

+2
∫

IR12
σ r
′
δv′δE ′

(
F0f

e ′f n−f ef e	 f i
)
dve
′ dv	e dvi dvn,

(7a)
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Qi,ir (f e, f i, f n)(vi) =
∫

IR12
σ rδvδE

(
F0f

ef n−f e ′f e	 f i
)
dve dve

′ dv	e dvn,

(7b)

Qn,ir (f e, f i, f n)(vn) =
∫

IR12
σ rδvδE

(
f e
′
f e	 f

i −F0f
ef n

)
dve dve

′ dv	e dvi .

(7c)

Taking into account Assumption 2.4, the reverse reaction cross section
writes

σ r =σ r(ve ′, v	e , vi;ve, vn)=σ r(ve ′, v	e ;ve), (8)

and σ r ′ = σ r(ve, v	e ;ve ′). The notations δE and δv hold for the energy
and momentum conservation during the ionization-recombination process;
more precisely, we have:

δE = δ
(
me|ve|2+mn|vn|2− [me(|ve ′|2+|v	e |2)+mi |vi |2+2∆]

)
,

(9)
δv = δ

(
meve+mnvn− [me(ve ′ +v	e)+mivi ]

)
,

where δ denotes the Dirac measure, and ∆ the ionization energy (which is
a constant). Notice that the factor 2 in Eq. (7a) is a consequence of the
indistinguishability of the two electrons in the right hand side of Eq. (5).
This indistinguishability and the principle of detailed balance imply that

σ r =σ r(ve ′, v	e ;ve)=σ r(v	e , ve ′;ve)=σ r(ve, v	e ;ve ′)=σ r ′. (10)

The reference values of the problem are now introduced in order to scale
the kinetic system (1).

3. THE SCALED KINETIC SYSTEM

Let ε denote the parameter measuring the relative smallness of the
electron mass with respect to the neutral particle:

ε=
√
me

mn
=
√

me

mi +me <<1.
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Assumption 3.1. We assume that electrons, ions and neutral species
have temperatures of the same order of magnitude T0. Their reference
velocities (vα)0 will be defined from the thermal velocity,

(vα)0=
√
kT0

mα
, with α= e, i, n,

k being the Boltzmann constant. Consequently, these velocities only
depend on the masses, and more precisely we have:

(vn)0=
√

1− ε2 (vi)0= ε (ve)0.

Besides, we will choose x0= t0 (ve)0 as reference length. The reference time
t0 is specified latter on.

Assumption 3.2. We also assume that the densities of the charged
particles have the same order of magnitude: (ρe)0= (ρi)0. We introduce a
second small parameter measuring the ionization level,

δ= (ρe)0
(ρn)0

= (ρi)0
(ρn)0

,

where (ρn)0 is the typical density of neutral particles. The distribution
function scales are determined from the previous characteristic quantities
according to (f α)0= (ρα)0(vα)−3

0 where α= e, i, n.

Assumption 3.3. The force field Fα with α = e, i, n, is assumed to
derive from a potential and to be relatively weak, i.e. the force term
(Fαm

−1
α ) ·∇vαf α involved in (1) is supposed to be of lower order than the

collision operator (∂tf α)c. The force scale is related to the length scale by
(Fα)0=kT0x

−1
0 .

To specify the typical values of the elastic collision operators Qαβ , let us
first introduce the following assumptions:

Assumption 3.4. The interaction potentials associated with binary
elastic collisions between the various species of charged particles have the
same order of magnitude:

σF
αβ =σF

0 for any α,β= e, i.

A similar property is supposed to apply to elastic binary collisions involv-
ing (at least) one neutral particle, thus:

σB
nα=σB

αn=σB
0 where α= e, i or n.
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Due to Assumption 2.5 the collision cross sections σF
αβ (resp. σB

αβ ) associ-
ated with the different species will only differ by the masses through the
reduced kinetic energy, as in ref. 10. We can thus distinguish collisions
between particles of mass characterized by similar or distinct orders of
magnitude to define the scaled scattering cross sections:

σB
αβ =σB

αβ (E, χ)=






σB
0 σ̄B

( E
kT0

, χ
)
, if α �=β,

σB
0 σ̄B

	

( 2E
kT0

, χ
)
, if α=β,

(11)

and

σF
αβ =σF

αβ (E)=






σF
0 σ̄F

( E
kT0

)
, if α �=β,

σF
0 σ̄F

	

( 2E
kT0

)
, if α=β.

(12)

Denoting by ταβ [resp.
(
Qαβ

)
0] the characteristic collision time [resp.

characteristic elastic collision operator] of a particle of β species against
a particle of α species, we have:

(
Qαβ

)
0 = (fα)0/ταβ . These characteristic

collision times are given in the Fokker–Planck case (i.e. for α,β ∈{e, i}) by

ταβ =
(
mα

µαβ

)2 1

σF
0 (ρβ)0

(vα)0
[
Max

(
(vα)0, (vβ)0

)]3
Min

(
(vα)0,

mβ

mα
(vβ)0

)
,

and in the Boltzmann case (i.e. if n∈{α,β}) by

ταβ = 1

σB
0 (ρβ)0

1

Max
(
(vα)0, (vβ)0

) .

In particular, we have:

τee= 1

σF
0 (ρe)0 (ve)0

, τen= 1

σB
0 (ρn)0 (ve)0

.

This also gives the following orderings:
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τee = (1− ε2)2τei = ε(1− ε2)3/2τie = ε
√

1− ε2
τii ,

and

τen = ε
√

1− ε2
τin = ετnn = δτne = ε

√
1− ε2

δτni .

To conclude the determination of the reference values, the typical value
of the ionization-recombination operator Qα,ir can be written

(
Qα,ir

)
0=

(ρe)0 (vα)
−3
0 τ−1

ir where τir is the relaxation time of ionizing collisions
between electron and neutral particle.

The variables involved in (1)–(2) can now be defined from the previ-
ous quantities according to

t= t0 t̄ , x=x0 x̄, vα= (vα)0 v̄α, f α= (f α)0 f̄ α, ....

In the sequel we will only use reference values and dimensionless variables.
To simplify the notations, the bar above dimensionless variables will there-
fore be omitted from now on.

The dimensionless version of the system of Boltzmann equations (1)–
(2) can then be written as

∂tf
e+ve ·∇xf e+Fe ·∇vef e

= t0

τir
Qe,ir (f e, f i, f n)+ t0

τee

[
Qee(f e, f e)+Qei

ε (f
e, f i)

]

+ t0

τen
Qen
ε (f

e, f n),

∂tf
i + ε

√
1− ε2

(
vi ·∇xf i +Fi ·∇vi f i

)

= t0

τir
Qi,ir (f e, f i, f n)+ t0

τee

[ ε
√

1− ε2
Qii(f i, f i)+ ε Qie

ε (f
i, f e)

]

+ t0

τen

ε
√

1− ε2
Qin
ε (f

i, f n),

∂tf
n+ ε

(
vn ·∇xf n+Fn ·∇vnf n

)

= t0

τir
δ Qn,ir (f e, f i, f n)+ t0

τen

[
ε Qnn(f n, f n)+ ε δ Qne

ε (f
n, f e)

+ ε δ
√

1− ε2
Qni
ε (f

n, f i)
]
. (13)
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The scaled collision operators are now detailed. In the Boltzmann case, we
have (note that the factor 1/ε just below is due to the fact that the inte-
gral term in the expression of Qne

ε is of order ε; we refer to(10) for details,
and to Lemma 4.1 below):

Qne
ε (f

n, f e)(vn)=
√

1+ ε2

ε

∫

IR3×S2
BB

(εvn−ve√
1+ ε2

,

)(
f nε
′
f eε
′ −f nf e

)
dve d
,

Qen
ε (f

e, f n)(ve)=
√

1+ ε2
∫

IR3×S2
BB

(ve− εvn√
1+ ε2

,

)(
f eε
′
f nε
′ −f ef n

)
dvn d
,

Qni
ε (f

n, f i)(vn)=
√

1− 1
2ε

2

∫

IR3×S2
BB
	

(√1− ε2vn−vi√
1− 1

2ε
2

,

)(
f nε
′
f iε
′−f nf i

)
dvid
,

Qin
ε (f

i, f n)(vi)=
√

1− 1
2ε

2

∫

IR3×S2
BB
	

(vi−
√

1− ε2vn√
1− 1

2ε
2

,

)(
f iε
′
f nε
′−f if n

)
dvnd
,

and

Qnn(f n, f n)(vn)=
∫

IR3×S2
BB
	

(
vn−v	n,


)(
f n
′
f n

	′ −f nf n	
)
dv	n d
.

The dimensionless kernels BB(v,
) and BB
	 (v,
) are set equal to zero

when 
 satisfies (v ·
)<0 (i.e. when χ lies within the range [−1,0]). When

 belongs to S2+, and thus χ ∈ [0,1], they are expressed in term of the
related dimensionless scattering cross sections, as follows:

BB(v,
)=BB(|v|, χ)=|v| σ̄B(|v|2, χ), with |v|2 = E
kT0

BB
	 (v,
)=BB

	 (|v|, χ)=|v| σ̄B
	 (|v|2, χ), with |v|2 = 2E

kT0
.

(14)

Concerning the Fokker–Planck–Landau case, the scaled collision operators
read:

Qαα(f α, f α)(vα) = ∇vα ·
∫

IR3
BF
	

(
vα−v	α

)
S
(
vα−v	α

)

× (∇vαf αf α	 −∇v	αf α	 f α
)
dv	α with α= e, i,

Qei
ε (f

e, f i)(ve) =
√

1− ε2

×∇ve ·
∫

IR3
BF

(√
1− ε2 ve− ε vi

)
S

(

ve− ε
√

1− ε2
vi

)

×
(

∇vef ef i −
ε

√
1− ε2

∇vi f if e
)

dvi,
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and

Qie
ε (f

i, f e)(vi) = −∇vi ·
∫

IR3
BF

(
εvi −

√
1− ε2ve

)

×S
(

ε
√

1− ε2
vi −ve

)

×
(

∇vef ef i −
ε

√
1− ε2

∇vi f if e
)

dve.

The dimensionless kernels BF (v) and BF
	 (v) are also defined from the

related scaled scattering cross sections of (12), according to

BF (v)=BF (|v|)=|v|3 σ̄F (|v|2),
BF
	 (v)=BF

	 (|v|)=|v|3 σ̄F
	 (|v|2).

(15)

Notice that with these definitions we have Qne
ε =O(1) as well as Qie

ε =
O(1).

Remark. In the particular case of elastic collisions involving elec-
trons and neutral particles, the previous scaled operators are exactly the
same as in ref. 10. They differ from that latter work concerning collisions
with ions, due to the definition of ε. But the derivations remain similar.
The reader can thus refer to ref. 10 for further details.

The scaled versions of the ionization-recombination operators are
given by Eqs. (7a)–(7c) where F0 now denotes the dimensionless quantity
F0(f̄

e)−1. The scaled conservation Eqs. (9) are written:

δE = δ
(|ve|2+|vn|2− [|ve ′|2+|v	e |2+|vi |2+2∆]

)
,

δv = δ
(
ε ve+vn− [ε (ve ′ +v	e)+

√
1− ε2 vi ]

)
,

(16)

where ∆ holds for the ionization energy scaled by the thermal energy kT0.

Remark. Let us underline that choosing the time scaling

t0= τen= ε2τir = δ τee while δ→0,

we recover the dimensionless system studied in ref. 11. This corresponds to
a very weakly ionized plasma, such as a glow discharge, where ionization
occurs very seldom and the ionization level δ lies within the range 10−8 to
10−5, such that δ
 ε.
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Assumption 3.5. In the present study, we assume that

t0= τen= ε τir = δ τee and δ= ε. (17)

We will indeed investigate a plasma partially ionized, such as an arc dis-
charge. The ionization level δ is then several orders of magnitude larger
than in ref. 11 since it lies within the range 10−3 to 10−1, implying that
δ ≈ ε. Besides, within this framework, impact ionization gets a leading
order collisional process.

Thus the scaled system of kinetic equations writes:

∂tf
e+ve ·∇xf e+Fe ·∇vef e = Qen

ε (f
e, f n)

+ε [Qee(f e, f e)

+Qei
ε (f

e, f i)+Qe,ir (f e, f i, f n)
]
,

∂tf
i + ε√

1− ε2

(
vi ·∇xf i +Fi ·∇vi f i

) = ε√
1− ε2

Qin
ε (f

i, f n)

+εQi,ir (f e, f i, f n)

+ε2
[

1√
1− ε2

Qii(f i, f i)+Qie
ε (f

i, f e)

]
,

∂tf
n+ ε (vn ·∇xf n+Fn ·∇vnf n

) = εQnn(f n, f n)

+ε2
[
Qne
ε (f

n, f e)+ 1√
1− ε2

Qni
ε (f

n, f i)

+Qn,ir (f e, f i, f n)
]
. (18)

Remark. Collisions of electrons, ions and neutral particles with neu-
tral particles are leading order collisional processes, as in any weakly ion-
ized plasma. However, contrary to the very weakly ionized problem stud-
ied in ref. 11, the leading order operators of neutral particles and ions
are also coupled with electrons. Besides, the collision operators for elastic
electron collisions Qee and ionization Qe,ir have now the same order of
magnitude. But the main novelty comes from the ionization-recombination
operator for ions, which is here among the leading order operators. As we
will see later, the ionization-recombination operator is also crucial for the
determination of the equilibrium state for electrons and for the fluid limit:
in fact, if it were of less order (such as in ref. 11), the equilibrium state
for the electrons would be only isotropic (and not Maxwellian), and the
fluid model for the electrons would be a Spherical Harmonics Expansion-
model (or SHE-model, refs. 15,16 for instance). In this model, the equilib-
rium function is an isotropic function of the velocity v, and it satisfies a
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diffusion equation (with respect to the time and space variables) which is
parametrized by the energy W =|v|2/2. If in addition, we suppose that this
distribution function is Maxwellian, then we can recover a classical hydro-
dynamic model (of diffusive type) by taking the moments of the previous
equation with respect to W (see also ref. 17 for plasmas).

Before going on, let us now briefly explain the way we proceed in this
paper, in order to derive a fluid model (stated in Theorem 5.6 below) for
the mixture.

The starting point of the analysis is the coupled system of scaled
transport-collision equations (18). The method (detailed in paragraph 5),
is based on a classical Hilbert expansion, which consists in first doing a
formal asymptotic expansion of each distribution function f e, f i, f n in
terms of the small parameter ε (according to (35)), and then identifying
terms of equal powers in the scaled kinetic equations (18). This supposes
we have first expanded the collision operators in the right hand side of
these equations in terms of ε; concerning the interspecies elastic collision
operators, this has been investigated in refs. 10,18 within the frame of a
mixture made of two species of disparate masses. In Lemmas 4.1 and 4.2
below, we recall and extend these results to our case, for which we have
three species: electrons, ions and neutrals.

The zero order terms in the expansion of the distribution functions,
respectively denoted by f e0 , f i0 and f n0 , are given in Theorem 5.1: they
are all classical Maxwellian distributions, and f i0 and f n0 have same mean
velocity (denoted by u) and temperature (T ); they thus only differ through
their densities, which are respectively denoted by ρi and ρn. Moreover, f e0
has zero mean velocity, and its density ρe and temperature Te are linked
to the density of the two other species (ρi and ρn) by a generalized Saha
law (25). As we will see below, the way we derive these equilibrium is not
classical for the charged particles, due to the presence of strong ionization-
recombination processes.

Some technical lemmas are needed, in order to derive these results. We
first show that f e0 satisfies a linear homogeneous equation, which kernel is
made of isotropic functions (see Lemma 4.3). Then we find that f i0 arti-
ficially solves a linear equation (studied in Lemma 4.4), which right hand
side (which is directly linked to the ionization processes) is in fact zero. This
means that, up to this order, there is no production (or annihilation) of
ions due to ionization; and there is also naturally no production (or anni-
hilation) of electrons. This last fact, combined to some weak properties of
the collision term Qe,ir (entropy inequality) stated in Lemma 4.5, allow to
derive the final expression for f e0 as a centered Maxwellian, which density
and temperature are linked to the densities of the two other species.
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In order to derive a fluid model for the macroscopic quantities we have
exhibited, we have to go on in the identification, and compute corrections of
order one for each distribution function (denoted by f e1 , f i1 and f n1 ). For this,
we need to define the expansion of the ionization-recombination operators in
terms of ε: this is achieved around equilibrium states in Lemma 4.6.

The next paragraph is devoted to all these technical lemmas we have
mentioned, which are devoted to the different collision operators: asymp-
totic expansion in terms of ε, solvability conditions for the linear operators
involved in the different steps of the identification, entropy inequalities, etc.
The Hilbert method itself and the fluid limit are detailed in paragraph 5.

4. MAIN PROPERTIES OF THE COLLISION OPERATORS

Let us first give expansions, with respect to the small parameter ε, of the
elastic collision operators Qαβ

ε . We also recall some elementary properties
of the different terms of these expansions: parity, mass conservation. In
the Boltzmann case, we have:

Lemma 4.1. Let f α, where α = e, i, n, be sufficiently regular func-
tions.

(i) Let α, β= i, n and α �=β. Then

Qαβ
ε (f

α, f β)=Qαβ

0 (f α, f β)+O(ε2),

with

Q
αβ

0 (f α, f β)(vα)=
∫

IR3×S2
BB
	

(
vα−v	β,


)(
f α
′
f
β ′
	 −f αf β	

)
dv	β d
.

(ii) Let α, β= e, n and α �=β. Then

Qαβ
ε (f

α, f β)=Qαβ

0 (f α, f β)+ ε Qαβ

1 (f α, f β)+O(ε2),

with

Qen
0 (f

e, f n)(ve)

= qB
e (f

e)(ve)

∫

IR3
f n(vn)dvn,

Qen
1 (f

e, f n)(ve) =
(
−∇ve [qB

e (f
e)]+qB

e (∇vef e)
)
(ve) ·

∫

IR3
vnf

n(vn)dvn,

Qne
0 (f

n, f e)(vn) = −2∇vnf n(vn) ·
∫

IR3×S2
BB(ve,
)

(ve ·
)2
|ve|2

vef
e(ve)dved
,
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Qne
1 (f

n, f e)(vn) = 2∇2
vn
f n(vn)

:
[∫

IR3×S2
BB(ve,
)

(ve,
)
4

|ve|4
(ve⊗ve)f e(ve)dved


+1
2

∫

IR3×S2
BB(ve,
)(ve,
)2

(

1− (ve,
)
2

|ve|2
)

×S(ve) f e(ve) dve d

]
−2[∇vn(vnf n)]s(vn)

:
∫

IR3×S2
BB(ve,
)

(ve,
)
2

|ve|2
(ve⊗∇vef e)s(ve) dve d
.

The superscript s indicates that a tensor is symmetrized, and the notation
A : B, where A and B are two matrices with respective entries Aij , Bij ,
denotes the contracted product:

∑
i,j AijBij . Moreover, the linear operator

qB
e is defined by

qB
e (f

e)(ve)=
∫

S2
BB (ve,
)

[
f e (ve−2(ve,
)
)−f e(ve)

]
d
.

(iii) For any f e, f n we have:

Qen
i

[
f e(−ve), f n

]
(ve)= (−1)iQen

i

[
f e, f n

]
(−ve)

(iv) Mass conservation implies that:

∫

IR3
Qen
j

(
f e, f n

)
(ve) dve=0, ∀j ∈ IN.

Proof. The expansions of Qen
ε and Qne

ε are identical to the expres-
sions proposed in ref. 10. Besides, the other expansions specific to the
present problem are obtained in a similar way. Points (iii) and (iv) is a par-
ticular case of a result stated in ref. 10, propositions 4.8 and 4.7.

In the Fokker–Planck–Landau case, we obtain:

Lemma 4.2.

(i) Let f α with α= e, i, be sufficiently regular functions. Then

Qei
ε (f

e, f i) = Qei
0 (f

e, f i)+ ε Qei
1 (f

e, f i)+O(ε2),

Qie
ε (f

i, f e) = Qie
0 (f

i, f e)+O(ε),
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with

Qei
0 (f

e, f i)(ve) = qF
e (f

e)(ve)

∫

IR3
f i(vi)dvi,

Qei
1 (f

e, f i)(ve) =
(
−∇ve [qF

e (f
e)]+qF

e (∇vef e)
)
(ve) ·

∫

IR3
vif

i(vi)dvi,

Qie
0 (f

i, f e)(vi) = −2 ∇vi f i(vi) ·
∫

IR3

BF (ve)
|ve|2 ve f

e(ve) dve,

and

qF
e (f

e)=∇ve ·
[
BF S∇vef e

]
.

(ii) Mass conservation implies that:

∫

IR3
Qei
j

(
f e, f i

)
(ve) dve=0, ∀j ∈ IN.

Proof. Again, details of the derivations are not reported here since
a similar result is stated in ref. 10.

We now examine some properties of the linear operators involved in the
different steps of the Hilbert expansion. In the sequel, we denote by
Muα,Tα the normalized (i.e. with mean density equal to 1) Maxwellian of
mean velocity uα and temperature Tα defined by

Muα,Tα (v)=
1

(2πTα)3/2
exp

[

− (v−uα)2

2Tα

]

. (19)

First, concerning the electrons, the linear operator involved is the operator
Len defined by

Lenφ=Qen
0 (φ, f

n
0 )=ρn qB

e (φ), (20)

where ρn=
∫
IR3 f

n
0 (vn)dvn is the density of neutral particles.

Let us first recall a result of ref. 19.

Lemma 4.3. (i) The kernel of the operator Len is made of isotropic
functions, i.e. functions φ= φ(v) such that φ(v)= φ̄(|v|). In particular, if
ϕ is an odd function of the velocity variable, then the equation Lenφ=ϕ
has a unique odd solution φ0 and any other solution φ writes φ=φ0+ φ̄,
where φ̄ is isotropic.
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(ii) More generally, let us introduce the energy variable W(v)=|v|2/2,
and the sphere SW = {v∈ IR3, W(v)=W } ; we recall the co-area formula

∫

IR3
f (v)dv=

∫ +∞

0

(∫

SW

f (v) dN(v)

)
dW,

where dN(v)= dSW (v)
|∇W(v)| = dSW (v)√

2W
(dSW is the euclidian surface element on

SW ). Then the equation Lenφ= ϕ has a solution if and only if the right
hand side satisfies the following orthogonality relation:

∀W >0,
∫

SW

ϕ(v) dN(v)=0. (21)

In particular, for any T >0, the relation:

∫

IR3
ϕ(v)M0,T (v) dv=0, (22)

is a necessary condition of solvability.

Remark. The same result holds in the Fokker–Planck case, i.e. for
the operator qF

e defined in Lemma 4.2 (see ref. 17). This property is char-
acteristic of what is usually called Lorentz operators.
For the ions, we define the linear operator Lin by

Linφ=M−1
u,T Q

in
0

(
Mu,T φ,ρnMu,T

)
, (23)

with Qin
0 given in Lemma 4.1. We have

Linφ(vi)=ρn
∫

IR3×S2
BB
	 (vi −vn,
) Mu,T (vn)

[
φ(vi

′)−φ(vi)
]
dvn d
,

with the notation vi
′ =vi − (vi −vn,
)
. Then

Lemma 4.4. The linear operator Lin is self-adjoint on the weighted
Hilbert space defined by

L2
Mu,T
=
{
f /

∫

IR3
f 2(v) Mu,T (v) dv < +∞

}
,
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and its kernel is made of constant functions. Moreover, under suitable
assumptions on BB

	 , the equation Linφ= ϕ is solvable if and only if the
right hand side ϕ satisfies the orthogonality relation:

∫

IR3
ϕ(v) Mu,T (v) dv=0;

the solution φ is then unique, up to an additive constant.

Proof. The proof partly results from the following weak formulation
∫

IR3
Linφ(vi)ϕ(vi) Mu,T (vi) dvi

=−1
2
ρn

∫

IR3

∫

IR3×S2
BB
	 (vi −vn,
)

[
φ(vi

′)−φ(vi)
]

× [
ϕ(vi

′)−ϕ(vi)
]
Mu,T (vi) Mu,T (vn) d
 dvn dvi .

We now turn investigating some properties of the ionization-recombination
collision operator: in Lemma 4.5 below, we first state a weak formulation,
and an entropy inequality, for the dominating part of this operator (in terms
of ε), while Lemma 4.5 is devoted to the computation of its linearization.
For any α∈{e, i, n}, we simply denote by Qα,ir

0 the limit, when ε goes to zero,
of the operator Qα,ir . These three leading order ionization-recombination
operators are still given by expression (7a)–(7c), but where the conservation
Eqs. (16) have to be replaced by their limit when ε goes to zero, i.e. by

δv = δ(vn−vi),
δE = δ

(
|ve|2− [|ve ′|2+|v	e |2+2∆]

)
, (24)

In the sequel, the most important (and useful) result concerns the elec-
trons. We have:

Lemma 4.5. Let f n = ρnMu,T , f i = ρiMu,T and δE be defined by
(24).

(i) Then, for any regular test function ψ , we have the following weak
formulation:

∫

IR3
Q
e,ir
0

(
f e, f i, f n

)
(ve) ψ(ve) dve=

−ρi
∫

IR9
σ r δE

[
F0

ρn

ρi
f e(ve)−f e(ve ′) f e(v	e )

]

× [
ψ(ve)−ψ(ve ′)−ψ(v	e)

]
dve dve

′ dv	e .
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(ii) Let H(f e)= log(F−1
0 ρ−1

n ρi f
e), and let σ r be positive, then

∫

IR3
Q
e,ir
0

(
f e, f i, f n

)
(ve) H(f

e)(ve) dve

=−ρi
∫

IR9
σ r δE

[
F0

ρn

ρi
f e(ve)−f e(ve ′) f e(v	e )

]

×
[

log
(

F0
ρn

ρi
f e(ve)

)
− log

(
f e(ve

′)f e(v	e )
)
]
dvedve

′dv	e � 0.

(iii) In particular, if f e is isotropic (i.e. f e(ve)= f e(|ve|)) and such
that Qe,ir

0

(
f e, f i, f n

)
=0, then f e=ρeM0,Te , with:

ρe= F0 ρn

ρi
(2πTe)3/2 exp

(
−∆
Te

)
. (25)

Proof. The proof of the first two points is straightforward using the
symmetry property (10) and Eq. (16). We now show point (iii). If f e is
isotropic, the function H defined by H = log [(ρif e) / (ρnF0)], is also iso-
tropic. With the notation E = 1

2 |ve|2, we can introduce the function ϕ of
the energy variable E by setting: ϕ(E)=H(|ve|).
Let us now suppose that: Qe,ir

0

(
f e, f i, f n

)
=0; we get in particular:

∫

IR3
Q
e,ir
0

(
f e, f i, f n

)
(ve) H(f

e)(ve) dve=0.

Using the positivity of the recombination cross section σ r , we deduce from
the entropy inequality (ii) that:

ϕ(E)=ϕ(E ′)+ϕ(E	) with E=E ′ +E	+∆, (26)

whenever E,E ′,E	∈IR+. From (26), we have E ∈ [∆, Ē) and E ′,E	∈[0, Ē−∆)
where Ē can be arbitrarily large.
Next, we successively proceed to the following changes of variables in (26):
1, 2) E→ E ±h and E	 fixed, (3) E→ E −h and E ′ fixed, (4) E ′ → E ′ +h
and E fixed, and substract (26) to obtain:

ϕ(E ′ ±h)−ϕ(E ′) = ϕ(E±h)−ϕ(E),
ϕ(E	)−ϕ(E	−h) = ϕ(E)−ϕ(E−h),
ϕ(E ′ +h)−ϕ(E ′) = ϕ(E	)−ϕ(E	−h).
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Combining the resulting equations gives

ϕ(E+h)−2 ϕ(E)+ϕ(E−h) = 0,

ϕ(E ′ +h)−2 ϕ(E ′)+ϕ(E ′ −h) = 0. (27)

As h can be made arbitrarily small, Eqs. (27) show that ϕ is an affine
function in the intervals [∆, Ē) and [0, Ē −∆), respectively. But Ē can be
arbitrarily large, while ∆ is assumed to be finite. There exists thus a value
of Ē such that Ē −∆ � ∆, which implies that the two intervals cover the
whole energy interval IR+. Consequently, we conclude that ϕ(E)=a+ c E
with E ∈ IR+. The determination of a is then straightforward substitut-
ing the previous expression of ϕ in (26). Thus, H(ve)= c

(
1
2 |ve|2+∆

)

and

f e0 (|ve|)=
F0ρn

ρi
exp

[

−|ve|
2+2∆
2Te

]

,

which concludes the proof.

Let us now precise the expansion, in terms of ε, of each ionization-recom-
bination operator around the equilibrium state.

Lemma 4.6. Let us set: f α0 =ραMu,T for α= i, n and f e0 =ρeM0,Te .
We expand the distributions in terms of ε by setting:

f αε =f α0
(

1+ ε φα1 + ε2φα2

)
+O(ε3) for α= e, i, n. (28)

Then, if ρe is given by (25), we have, for any α= e, i, n:

Q
α,ir
0

(
f e0 , f

i
0 , f

n
0

)
=0, (29)

and

Qα,ir
(
f eε , f

i
ε , f

n
ε

)
= εLQα,ir

(
φe1, φ

i
1, φ

n
1

)

+ε2
[
LQα,ir

(
φe2, φ

i
2, φ

n
2

)
+DQα,ir

(
φe1, φ

i
1, φ

n
1

)
+Rα

]

+O(ε3), (30)
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with

(
f e0 (ve)

)−1 LQe,ir
(
φe,φi, φn

)
(ve)

=−F0

∫

IR9
σ r δE f n0 (vi)

[
φe(ve)+φn(vi)

−φe(ve ′)−φe(v	e)−φi(vi)
]
dvidv

	
e dve

′

+2
∫

IR9
σ r δE ′f e0 (v

	
e ) f

i
0 (vi)

[
φe(ve

′)+φn(vi)

−φe(ve)−φe(v	e)−φi(vi)
]
dvi dv

	
e dve

′,
(
f i0 (vi)

)−1 LQi,ir
(
φe,φi, φn

)
(vi)

=
∫

IR9
σ r δEf e0 (ve

′)f e0 (v
	
e )
[
φe(ve)+φn(vi)

−φe(ve ′)−φe(v	e)−φi(vi)
]
dve dv

	
e dve

′,
(
f n0 (vn)

)−1 LQn,ir
(
φe,φi, φn

)
(vn)

=F0

∫

IR9
σ rδEf e0 (ve)

[
φe(ve

′)+φe(v	e)+φi(vn)

−φe(ve)−φn(vn)
]
dve dv

	
e dve

′,

and

(f e0 (ve))
−1DQe,ir (φe, φi, φn)(ve)

=−F0

∫

IR9
σ r δE f n0 (vi)

[
φe(ve) φ

n(vi)−φe(ve ′) φe(v	e )

−φi(vi) φe(ve ′)−φi(vi) φe(v	e )
]
dvidv

	
edve

′

+2
∫

IR9
σ r δE ′f e0 (v

	
e ) f

i
0 (vi)

[
φe(ve

′) φe(v	e )+φi(vi) φe(ve ′)

+φi(vi) φe(v	e )−φe(ve) φn(vi)
]
dvi dv

	
e dve

′,

(f i0 (vi))
−1DQi,ir (φe, φi, φn)(vi)

=
∫

IR9
σ r δEf e0 (ve

′) f e0 (v
	
e )
[
φe(ve) φ

n(vi)−φe(ve ′) φe(v	e )

−φi(vi) φe(ve ′)−φi(vi) φe(v	e )
]
dve dv

	
e dve

′,
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(
f n0 (vn)

)−1
DQn,ir

(
φe,φi, φn

)
(vn)

=F0

∫

IR9
σ rδEf e0 (ve)

[
φe(ve

′)φe(v	e )+φi(vi) φe(ve ′)

+φi(vi) φe(v	e )−φe(ve) φn(vi)
]
dve dv

	
e dve

′,

where δE stands for |ve|2=|ve ′|2+|v	e |2+2∆. Finally, the remainder terms
Rβ (which are linked to the order two corrections in the conservation
equations) are such that:

Re=0,
∫

IR3
Ri(vi) dvi =0,

∫

IR3
Rn(vn) dvn=0. (31)

Proof. We start from the definition (7a)–(7c) of the ionization-
recombination operators and set: f α0 = ραMu,T for α = i, n, and f e0 =
ρeM0,Te . We notice that the scaled conservation equations (16) give:

vn = vi +O(ε2),

|ve|2 = |ve ′|2+|v	e |2+2∆+ (|vi |2−|vn|2)=|ve ′|2+|v	e |2+2∆+O(ε2),

so that, thanks to (25), we deduce that:

F0f
e
0 (ve)f

n
0 (vn)−f e0 (ve ′)f e0 (v	e )f i0 (vi)

=F0 f
e
0 (ve) f

n
0 (vn)

[

1− exp
(

−|vi |
2−|vn|2

2

(
1
T
− 1
Te

))]

=F0 f
e
0 (ve) f

n
0 (vn)

|vi |2−|vn|2
2

(
1
T
− 1
Te

)
+O(ε4)

=O(ε2);

this gives (29), and the order two correction above allows to com-
pute the remainders Rβ . Now, inserting the expansion (28) in each
ionization-recombination collision term, we obtain, after some easy
(but lengthy) computations, the expression of the remaining terms in
(30).
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5. THE HYDRODYNAMIC MODEL

We start from the system of scaled kinetic equations (18), replace
the elastic collision operators Qαβ

ε by the expansions proposed in Lemma
4.1 and 4.2, and introduce the diffusion scaling of small parameter ε:
t → ε2t , x → εx. We obtain:
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+O(ε2),

(32)

∂tf
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ε +vi ·∇xf iε +Fi ·∇vi f iε
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ε )+Qie

0 (f
i
ε , f

e
ε )

+ε
[

1
2
Qin

0 (f
i
ε , f

n
ε )+Qin

2 (f
i
ε , f

n
ε )+Qie

1 (f
i
ε , f

e
ε )

]
+O(ε2), (33)

∂tf
n
ε +vn ·∇xf nε +Fn ·∇vnf nε = ε−1Qnn(f nε , f

n
ε )

+Qne
0 (f

n
ε , f

e
ε )+Qni

0 (f
n
ε , f

i
ε )+Qn,ir (f eε , f

i
ε , f

n
ε )

+ε Qne
1 (f

n
ε , f

e
ε )+O(ε2). (34)

Next, we expand the solutions in powers of ε,

f eε =f e0 +ε f e1 +ε2 f e2 +O(ε3) and f αε =f α0 +ε f α1 +O(ε2), α= i,n,
(35)

setting f
β

1 = f β0 φ
β

1 with β = e, i, n. Then, we insert these expansions
in the system (32)–(34) and identify terms of equal powers of ε. This
leads to a system of equations to be successively solved. The iden-
tification of the lowest order terms first gives the equilibrium states
for each species: we refer to Theorem 5.1 below. Then the identifica-
tion of the following terms in (32)–(34) allow to compute the order
one corrections, denoted by f α1 (α = e, i, n), as expressed in Lemmas
5.2 (α = n), 5.3 (α = e) and 5.4 (α = i). Solvability conditions finally
give the coupled fluid model for the mixture, which is stated in The-
orem 5.6 below. We now detail these different steps. For clarity, the
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proofs of the forthcoming statements are postponed to the next sec-
tion.
Let us start with the identification of the lowest order terms, which are of
order ε−2 for the electrons (in Eq. (32)) and ε−1 for the other species, i.e.
in Eqs. (33), (34). We get:

Qen
0 (f

e
0 , f

n
0 )(ve)=0, (36)

Qin
0

(
f i0 , f

n
0

)
(vi)+Qi,ir

0 (f e0 , f
i
0 , f

n
0 )(vi)=0, (37)

Qnn
0

(
f n0 , f

n
0

)
(vn)=0. (38)

This allows to derive the equilibrium distribution functions f n0 , f i0 and f e0 .
More precisely, we obtain:

Theorem 5.1. The equilibrium distribution functions of neutral par-
ticles f n0 and ions f i0 are Maxwellians characterized by the same mean
velocity u and temperature T :

f α0 (vα)=ραMu,T (vα)= ρα

(2πT )3/2
exp

(

−|vα−u|2
2T

)

, with α= i, n.

(39)

The equilibrium distribution function of electrons is the centered Maxwell-
ian of temperature Te:

f e0 (ve)=ρeM0,Te (ve)=
ρe

(2πTe)3/2
exp

(

−|ve|
2

2Te

)

, (40)

where the electron density ρe is governed by the ion density ρi , the den-
sity of neutral particles ρn and the electron temperature Te, according
to

ρe= F0 ρn

ρi
(2πTe)3/2 exp

(
−∆
Te

)
. (41)

Remark. This closure equation for defining ρe is a Saha law gen-
eralized to a plasma characterized by two temperatures: a tempera-
ture for heavy particles and another temperature for light particles.
To our knowledge, there exist two distinct generalizations of the Saha
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law for two temperature plasma: Potapov’s equation,(20,21) and Eindho-
ven’s equation.(22–24) They differ due to the definition used for the
internal partition functions, Zi , Zn, which is generalized for the for-
mer and not for the latter. The generalized Saha law we obtain Eq.
(41) turns out to be a dimensionless version of Eindhoven’s formula-
tion

ρe=2
Zi

Zn

ρn

ρi

(
2πmekTe

h2

)3/2

exp
(
− ∆

kTe

)
, (42)

where h denotes Planck constant and the ionization lowering is neglected
(since we assumed ∆ constant). The kinetic derivation proposed in this
study thus supports previous argumentations, such as in ref. 25 and refer-
ences within, in favour of Eindhoven’s generalization of the Saha law. The
other formulation does not seem to be consistent with the entropy inequal-
ity (which is needed to derive the macroscopic limit).

Then we introduce the conservative variable u=(ρn, ρi, ρnu, ρnE,ρeEe):
IR3× IR+→U where U denotes the open set

{
u ∈ IR7, ρn ∈ IR+, ρi ∈ IR+,

ρnu∈ IR3, T ∈ IR+, Te ∈ IR+,
}
. The density ρn, the momentum ρnu and the

energy ρnE=ρn(|u|2+3T )/2 of neutral particles are such that:




ρn
ρnu

ρnE



=
∫

IR3




1
vn
1
2 |vn|2



f n0 (vn)dvn. (43)

The ion density ρi and the electron internal energy ρeEe = 3
2ρeTe are

defined by

ρi =
∫

IR3
f i0 (vi) dvi and ρeEe= 1

2

∫

IR3
|ve|2 f e0 (ve)dve. (44)

Equipped with these notations, we now go on and identify terms of order
ε−1 in the kinetic equation associated with the electrons, and in the same
way, constant terms in the Eqs. (33)–(34). Thanks to Lemma 4.6, we
have in particular Q

e,ir
0

(
f e0 , f

i
0 , f

n
0

) = Qn,ir
0

(
f e0 , f

i
0 , f

n
0

) = 0, so that we
get:
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−ve ·∇xf e0 (ve)−Fe ·∇vef e0 (ve)+Qen
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1

)
(ve)

+Qen
1

(
f e0 ,f

n
0

)
(ve)+Qee

(
f e0 ,f

e
0

)
(ve)+ Qei
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(ve)=0, (45)

−∂tf i0 (vi)−vi ·∇xf i0 (vi)−Fi ·∇vi f i0 (vi)+Qin
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0 )(vi)=0, (46)

−∂tf n0 (vn)−vn ·∇xf n0 (vn)−Fn ·∇vnf n0 (vn)+2 Qnn
(
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)
(vn)

+Qne
0

(
f n0 , f

e
0

)
(vn)+Qni

0

(
f n0 , f

i
0

)
(vn)=0. (47)

This identification allows to determine the first order corrective terms
f α1 (vα), with α = e, n, i; moreover, solvability conditions appear in this
computation, which lead to a fluid model for neutrals (Lemma 5.2) and
ions (Lemma 5.4).
Let us start with the easiest case, that means with neutrals. The linear
operator associated with this species is in fact the classical mono-species
linearized Boltzmann operator, here denoted by Lnn, and defined ref. 26
by:

Lnnφ=2ρnM
−1
u,T Q

nn
(
Mu,T ,Mu,T φ

)
. (48)

This operator also satisfies:

Lnnφ(vn) = ρn
∫

IR3×S2
BB
	 (vn−v	n,
) Mu,T (v

	
n)

× [
φ(v	n

′
)+φ(vn′)−φ(v	n)−φ(vn)

]
dv	n d
,

and classical Boltzmann theory(26) allows to derive the following result:

Lemma 5.2. The solution f n1 of Eq. (47) exists if and only if the
density ρn of neutral particles, their velocity u and their temperature T are
governed by the following fluid system (t >0, x ∈ IR3):

∂tρn+div(ρnu)=0,

∂t (ρnu)+div[ρn(u⊗u)]+∇x(ρnT )−ρnFn=0, (49)

∂t (ρnE)+div[ρnu(E+T )]−ρnu ·Fn=0,

where E= 1
2 |u|2+ 3

2T .
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Assuming that (49) is verified, there exists a unique solution f n1 =
f n0 φ

n
1 of Eq. (47) with φn1 in (Ker Lnn)

⊥, so that in particular, we
have:

∫

IR3
φn1 (v)Mu,T (v) dv=0. (50)

It is given by:

φn1 (vn) = −
1
ρn

[
an(T , |Vn|) A(Vn) · ∇xT√

T
+ 1

2
bn(T , |Vn|) B(Vn) :σ(u)

]
,

(51)

with the notations:

Vn= vn−u√
T

and A(v)=
(

1
2
|v|2− 5

2

)
v;

moreover, the traceless tensors B and σ (which is the strain tensor) are
defined by

B(v)=v⊗v− 1
3
|v|2 Id and σij (v)= ∂vi

∂xj
+ ∂vj
∂xi
− 2

3
div(v) δij .

Finally, the scalar functions an(T , |Vn|) and bn(T , |Vn|) are such that

A′(Vn)=− 1
ρn
an(T , |Vn|) A(Vn) and B ′(Vn)=− 1

ρn
bn(T , |Vn|) B(Vn)

are the unique solutions in (Ker Lnn)
⊥ of equations LnnA

′ = A and
LnnB

′ =B.

The next lemma is devoted to the computation of f e1 = f e0 φe1, accord-
ing to Eq. (45), and uses the properties of the linear operator Len
studied in Lemma 4.3. As we will see below, no solvability condition
appears during this computation, because the right hand side of the
equation satisfied by φe1 is odd. It is the reason why, we will have to
go on in this identification (just for the electrons) and consider the
solvability condition of the equation satisfied by the order two correc-
tion f e2 = f e0 φe2, in order to derive a fluid model for this species. For
the moment, we have the following explicit computation (this is spe-
cific to the case of Lorentz operators) of the first order correction
f e1 :
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Lemma 5.3. The unique solution f e1 =f e0 φe1 of Eq. (45) with φe1 in
(Ker Len)⊥, is given by

φe1(ve) = ve · φ̄e1(ve),

φ̄e1(ve) =
u

Te
− 1

2α(ve)ρn

[
∇xρn
ρn
− ∇xρi

ρi
− F

e

Te
+ ∇xTe

Te

(
|ve|2+2�

2Te

)]

,

(52)

where α is the isotropic function defined by

α(v) =α(|v|)=
∫

S2+
B(v,
)

(v,
)2

|v|2 d
.

We end with the computation of f i1 =f i0φi1 for the ions. Among the order
one corrections, this is the newest computation. It is based on the prop-
erties of the linear operator Lin studied in Lemma 4.4. This leads to only
one solvability condition, which gives a fluid equation for the density of
the ions; the macroscopic behaviour of the velocity u and the temperature
T , which are common with the neutrals, has been in fact already deter-
mined (see Lemma 5.2 above). Using all the notations of the preceding
lemmas, we have:

Lemma 5.4. If the solution f i1 = f i0φi1 of equation (46) exists, with
φi1 in (Ker Lin)⊥, i.e. such that:

∫

IR3
φi1(v)Mu,T (v) dv=0, (53)

then the density ρi of the ions has to satisfy the following fluid equa-
tion:

∂tρi +div(ρi u)=ρi Y ir , (54)

where Y ir is defined by (δE stands for |ve|2=|ve ′|2+|v	e |2+2∆):

Y ir =
∫

IR9
σ r δEf e0 (ve

′) f e0 (v
	
e )

[
φe1(ve)−φe1(ve ′)−φe1(v	e )

]
dve dve

′ dv	e .

(55)
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Conversely, let us suppose that conditions (54)–(55) are fulfilled. Then, Eq.
(46) has a unique solution f i1 =f i0φi1 with (53); moreover, setting Vi= (vi−
u)T −1/2, φi1 is given by

φi1(vi)=φn1 (vi) − ci Vi ·
(∇xρi
ρi
− ∇xρn

ρn
+ Fn−Fi

T

)
, (56)

where the scalar function ci=ci(ρi, ρn, |Vi |, T , Te) is isotropic with respect
to Vi .

As we have seen before, in order to derive a fluid model for the elec-
trons, we have to continue and identify terms of order ε0 in the kinetic
equation (32). This gives
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Then, establishing the solvability condition for this equation, we get:

Lemma 5.5. If the solution f e2 of Eq. (57) exists, then the electron
temperature Te satisfies

∂tTe+u ·∇xTe+ 2T 2
e

3Te+2∆

(
div(u)+ 1

ρe
div(ρeuJ )

)

=
(

1+ ρi
ρe

)
2T 2
e

3Te+2∆
Y ir , (58)

where we have set:

uJ =−d1

(∇xρn
ρn
− ∇xρi

ρi
− F

e

Te

)
− (d2+∆d1)

∇xTe
(Te)2

, (59)

with:

d1= 1
6ρn

∫

IR3

|v|2
α(|v|)M0,Te (v)dv, d2= 1

12ρn

∫

IR3

|v|4
α(|v|)M0,Te (v)dv.

(60)
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Finally, gathering all the previous results, we obtain the following hydro-
dynamic/diffusion system governing the time evolution of the neutral and
ion densities ρn and ρi , the velocity u and the temperature T of the heavy
particles, and the electron temperature Te.

Theorem 5.6. The inviscid hydrodynamic/diffusion system derived
from Eq. (32)–(34) is:

∂tρn+div(ρnu)=0, t >0, x ∈ IR3,

∂tρi +div(ρiu)=ρi Y ir ,
∂t (ρnu)+div[ρn(u⊗u)]+∇x(ρnT )−ρnFn=0,

∂t (ρnE)+div[ρnu(E+T )]−ρnu ·Fn=0,

∂tTe+u ·∇xTe+ 2T 2
e

3Te+2∆

(
div(u)+ 1

ρe
div(ρeuJ )

)

=
(

1+ ρi
ρe

)
2T 2
e

3Te+2∆
Y ir ,

with the energy E = 1
2 |u|2 + 3

2 T . The ionization-recombination source
term Y ir is defined in Lemma 5.4 and the diffusion velocity uJ is given
by (59)–(60).
This system is supplemented by the closure relation (41).

Remark 1. This fluid limit, which is valid for both the pre-sheath
and plasma column of an arc discharge, is inviscid. The viscous case is the
object of a forthcoming study.(14) But differences already appear compared
to previous models mentioned in the introduction. Let us do some com-
ments and comparisons.

We start discussing kinetic approaches, with Devoto’s model.(7) This
author does two main assumptions to derive a simplified model describ-
ing the transport properties of ionized gas mixtures. These simplifications
allow avoiding the expensive computations obtained with the exact theory.
First, the electron-heavy collision terms are neglected in deriving expres-
sions for the ion and atom transport properties. Secondly, the change
in the heavy perturbation term during a collision is also neglected in
obtaining expressions for the electron transport properties. This leads to
an hydrodynamic model for the heavy species which does not depend on
the electrons. Conversely, the heavy species appear in the computation of
the transport coefficients for the electrons (electron diffusive flux, electron
thermal flux). Our model is different for essentially two points. First, we
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consider weakly ionized plasma (δ≈10−2), so that the leading order colli-
sional term for the electrons is only due to elastic collisions with neutrals.
As a consequence, we can compute explicitly the order one correction f e1 ,
and the diffusion coefficients too. This is not the case in ref. 7, where the
collisions with electrons (and ions too) are also of the same order of mag-
nitude (which would correspond to a highly ionized plasma where δ≈ 1).
This explains in particular the expansion in a series of Sonine polynomials
we can find in ref. 7, and also the discussion concerning the degree of its
truncation (in order to get a sufficient accuracy in the computation of the
transport coefficients). Secondly, it seems that only elastic collisions have
been taken into account in ref. 7. The inelastic collisions play in fact a
very significant role in our study, both at the kinetic and the fluid level.
They govern in particular: (i) the production of mass for the ions (see Eq.
(54)), (ii) also the equilibrium state for the electrons; f e0 would be only an
isotropic function otherwise. Here it is a Maxwellian, although the intra
species collision term Qee is not dominant. (iii) And also, naturally, the
Saha law which does not exist in ref. 7 and which allows here reducing
the fluid model for the electrons to only one equation on their tempera-
ture.

The arc discharge model (for the cathode region) of ref. 1 is devel-
oped from the kinetic scale using physical arguments. Electrons and ions
are governed by Devoto’s model discussed above, but not neutrals. Their
density is indeed governed by Potapov’s generalization of the Saha law
to account for ionization and recombination. As already underlined, the
frame of assumptions introduced in refs. 7 and 1 to derive fluid limits
for electrons and heavy species differ, while a common frame is used here
for all the species. An other difference, discussed in the remark following
Theorem 5.1, is the formulation of the generalized Saha law; the present
study indeed leads to the other formulation, namely Eindhoven’s equation.
Moreover, the present work also applies to unsteady situations with mass
flow, contrary to ref. 1.

As arc discharges can involve unsteady and three-dimensional effects,
macroscopic models with these features have also been used in refs. 3
and 6 for instance. The drawback of these fluid approaches is that the
pre-sheath is modelled as the plasma column. Consequently ionization is
neglected, local thermal equilibrium is assumed not only for each species
but also between the species (one temperature model).

Remark 2. Let us conclude with some comment about Assumption
2.1. What happens if there is a magnetic field B? In fact, most of the
results are conserved, or slightly modified. In particular, the hydrody-
namic model derived in Theorem 5.6 is the same, apart from the fact
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that the diffusion coefficients di (i= 1,2), which appear in (59), are now
matrices with an antisymmetric part, due to the presence of the magnetic
field. We refer to a connected work (17) for the details in the computa-
tions.

6. PROOFS

We now turn proving our two main results, which are: the equilib-
rium states and the “Saha” law (Theorem 5.1), and the fluid model for the
whole system (Theorem 5.6).

Proof of Theorem 5.1. The equilibrium distribution function f n0
associated with the neutral particles is determined from Eq. (38). We first
notice that, similarly to the partially ionized plasma studied in ref. 11, f n0
is not influenced by electrons and ions. Applying the classical theory of the
Boltzmann equation to (38), we can immediately conclude that there exists
u∈ IR3, ρn and T ∈ IR+ such that:

f n0 (vn)=ρnMu,T (vn), (61)

which gives (39) for α=n.
Referring to Lemma 4.1 and 4.3, Eq. (45) means that f e0 has to be isotro-
pic, i.e. f e0 (ve)=f e0 (|ve|).
Consequently, Eq. (37) reads:

Qin
0

[
f i0 , ρnMu,T

]
+Qi,ir

[
f e0 , f

i
0 , ρnMu,T

]
=0. (62)

We now turn specifying the solution f i0 of (62) in the form f i0 =Mu,T φ
i
0,

with φi0 to be determined. Let us set:

ρi =
∫

IR3
f i0 (vi) dvi =

∫

IR3
Mu,T (vi) φ

i
0(vi) dvi .

Using the definition (7b) of Qi,ir and vn=vi (which is the limit (24) of δv
when ε→0), we obtain:

Qi,ir
(
f e0 , f

i
0 , ρnMu,T

)
(vi)=

[
A1−A2 ρ

−1
i φi0(vi)

]
Mu,T (vi), (63)
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where A1 and A2 denote the following positive constants (thanks to (8),
A1 and A2 are in fact independent of vi):

A1 =ρn
∫

IR9
σ r(v′e, v

	
e ;ve) δE F0 f

e
0 (|ve|) dve dve ′ dv	e ,

A2 =ρi
∫

IR9
σ r(v′e, v

	
e ;ve) δE f e0 (|v′e|) f e0 (|v	e |) dve dve ′ dv	e .

Referring to the definition (23) of Lin, the determination of f i0 solution of
(62) reduces then to the derivation of the positive function φi0 solution of

Linφ
i
0 = Si0, where Si0(vi)=−

[
A1−A2 ρ

−1
i φi0(vi)

]
. (64)

As the right hand side Si0 here depends on the unknown function φi0, the
solvability condition given by Lemma 4.4 only appears as a necessary con-
dition. So, if φi0 exists, we must have

∫
IR3 S

i
0Mu,T dv=0, or equivalently:

A1=A2.

We simply denote by A this common value, i.e. A1=A2=A.
Conversely, let us now assume that this condition A1=A2=A is satisfied;
we want to show that Eq. (64) has a solution. We first remark that the
constant function φi0 defined by φi0(vi)= ρi is clearly a solution of (64),
and that it is the only constant solution of (64). To prove that this solu-
tion is unique, let ϕ=φi0−φ, where φ is supposed to be another positive
solution of (64). Then ϕ belongs to the kernel of (Lin−Aρ−1

i Id). Now,
there are two cases:

(i) If A= 0, then, by Lemma 4.4, ϕ ∈ Ker Lin is constant and φ

also. But since Eq. (64) admits at most one constant solution, we deduce
that φ=φi0.

(ii) If A �=0. As (Lin−Aρ−1
i Id)ϕ=0, we obtain:

∫

IR3

(
Lin−Aρ−1

i

)
(ϕ) ϕ Mu,T dvi =0

=
∫

IR3
Linϕ ϕ Mu,T dvi −A ρ−1

i

∫

IR3
ϕ2 Mu,T dvi .
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We know from the weak formulation (cf. proof of Lemma 4.4) that the
first integral on the right hand side is negative. But as Aρ−1

i is positive,
we deduce that each term on the right hand side has to be zero, which
gives ϕ=0 and φ=φi0.

Consequently, the equilibrium distribution function for ions, f i0 , is the
Maxwellian characterized by the same mean velocity u and temperature T
than the neutral particles:

f i0 =ρiMu,T , (65)

provided that A1=A2.
Let us now look more precisely at this condition. As φi0=ρi , Eq. (63) shows
that, under the assumption A1=A2, we have: Qi,ir (f e0 , f

i
0 , f

n
0 )=0. In other

words, there is no production or annihilation of ions due to ionization-
recombination reactions at the order O(ε−1). This means naturally that,
still at this order, there is no production or annihilation of electrons due to
ionization-recombination, so that: Qe,ir (f e0 , f

i
0 , f

n
0 )=0 too. From the point

(iii) of Lemma 4.5, we deduce that the isotropic function f e0 is such that:
f e0 =ρeM0,Te , with ρe given by (41), which concludes the proof.

Proof of Lemma 5.2. Setting f n1 (vn)=f n0 (vn)φn1 (vn), we derive the
first corrective term f n1 from Eq. (47). We first notice that the collision

terms Qni
0

(
f n0 , f

i
0

)
and Qn,ir

(
f e0 , f

i
0 , f

n
0

)
are equal to zero. A similar

result holds for Qne
0

(
f n0 , f

e
0

)
, since f e0 and BB are even functions of ve.

Then (47) reduces to

Lnnφ
n
1 =

(
f n0

)−1[
∂t f

n
0 +vn ·∇xf n0 +Fn ·∇vnf n0

]
, (66)

where Lnn denotes the classical linearized Boltzmann operator defined by
(48). The solvability condition of the equation Lnnφ

n
1 =ϕ is a well known

result (cf. ref. 26 for instance):

∫

IR3
ϕ(vn)




1
vn

1
2 |vn|2



f n0 (vn) dvn=0. (67)

When applied to the present problem, this condition exactly leads to (49).
Setting Vn= (vn−u)T −1/2 and using (49) to express the time derivatives of
ρn, u and T , the right hand side of (66) can be written
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[
∂t +vn ·∇x +Fn ·∇vn

]
f n0 (vn)=f n0 (vn)

(
1
2
B(Vn) :σ(u)+A(Vn) · ∇xT√

T

)
.

(68)

The vector A, the tensor B and the traceless rate of strain tensor σ are
detailed in Lemma 5.2. We know from ref. 27 that

LnnA
′(Vn)=A(Vn) and LnnB

′(Vn)=B(Vn) (69)

have a unique solution in (Ker Lnn)⊥ of the form

A′(Vn)=− 1
ρn
an(T , |Vn|) Vn and B ′(Vn)=− 1

ρn
bn(T , |Vn|) B(Vn),

where an(T , |Vn|) and bn(T , |Vn|) are scalar functions satisfying the orthog-
onality requirements. Thus the expression of φn1 .

Proof of Lemma 5.3. We determine the first corrective term f e1
from Eq. (45), setting f e1 (ve) = f e0 (ve)φe1(ve). As the collisional terms
Qen

0 (f
e
0 , f

n
1 ), Q

ee(f e0 , f
e
0 ), Q

ei
0 (f

e
0 , f

i
0 ) and Qe,ir (f e0 , f

i
0 , f

n
0 ) are all equal

to zero, Eq. (45) reads

Lenφ
e
1= (f e0 )−1

[
ve ·∇xf e0 +Fe ·∇vef e0 −Qen

1 (f
e
0 , f

n
0 )

]
, (70)

where Len is defined in (20). Replacing f e0 by the expression given in The-
orem 5.1, Eq. (70) can be equivalently written:

Lenφ
e
1=

(
∇xρn
ρn
− ∇xρi

ρi
+ |ve|

2+2∆
2Te

∇xTe
Te
− Fe
Te

)

·ve− (f e0 )−1Qen
1 (f

e
0 , f

n
0 ).

As f e0 is an even function of the velocity, we know from Lemma 4.1 (iii)
that Qen

1 (f
e
0 , f

n
0 ) is an odd function of ve. The solvability condition of Eq.

(70) is thus satisfied, since the right hand side of the above equation is an
odd function of the velocity variable ve (cf. Lemma 4.3). Referring to the
computations done in ref. 17 (our operator Len is a Lorentz operator, such
as in ref. 17), we can compute φe1. We first remark that (10)

Len(v) = −2α(|v|)ρnv, (71)
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with α given by

α =α(|v|) =
∫

S2+
B(v,
)

(v,
)2

|v|2 d
,

and that we also have:

−(f e0 )−1Qen
1 (f

e
0 , f

n
0 ) = Len

(
u ·ve
Te

)
.

It thus remains to solve

Len

(
φe1−

u ·ve
Te

)
=

(
∇xρn
ρn
− ∇xρi

ρi
+ |ve|

2+2∆
2Te

∇xTe
Te
− Fe
Te

)

·ve,

which finally gives (52).

Proof of Lemma 5.4. We determine the first corrective term f i1
from Eq. (46). We write it in the form f i1 = f i0 φi1, with φi1 to be deter-
mined. Referring to Lemma 4.6, we first notice that LQi,ir can be written
(using the notations of Lemma 5.4):

LQi,ir
(
φe1, φ

n
1 , φ

i
1

)
= f i0 [ Se + Sin (φn1 −φi1) ],

where we have set for simplicity (δE stands for |ve|2=|ve ′|2+|v	e |2+2∆):

Se=
∫

IR9
σ r δE f e0 (ve

′) f e0 (v
	
e )

[
φe1(ve)−φe1(ve ′)−φe1(v	e )

]
dve dve

′ dv	e ,

and:

Sin=
∫

IR9
σ r δE f e0 (ve

′) f e0 (v
	
e ) dve dve

′ dv	e .

Besides, we have Qii(f i0 , f
i
0 )= 0 and Qie

0 (f
i
0 , f

e
0 )= 0. Equation (46) can

thus be written:

Linφ
i
1+

(
f i0

)−1
Qin

0

(
f i0 , f

n
1

)
= −[Se + Sin (φn1 −φi1)]

+
(
f i0

)−1 [
∂t +vi ·∇x +Fi ·∇vi

]
f i0 .

(72)
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From Lemma 4.4, straightforward computations show that, thanks to the
fact that the operator Qin

0 is conservative (i.e. of zero mean value), the
solvability condition for this equation, of unknown φi1, leads to Eq. (54)
with

Y ir = 1
ρi

∫

IR3
LQi,ir

(
φe1, φ

n
1 , φ

i
1

)
(vi)dvi = Se,

on account of the orthogonality relations (50) and (53), which gives (55).
Assume now that (54)–(55) is satisfied. To simplify the right hand side of
Eq. (72), we first replace f i0 by ρiMu,T (cf. Theorem 5.1). Next, using (49)
and (54), we express the time derivatives of ρn, ρi , u and T as functions
of space derivatives. We get:

(
f i0 (vi)

)−1[
∂t +vi ·∇x +Fi ·∇vi

]
f i0 (vi)=Y ir + (vi −u) ·ϒ

+1
2
B(Vi) :σ(u)+A(Vi) · ∇xT√

T
,

with the notations (the vector A and the traceless tensors B and σ have
been already defined in Lemma 5.2):

Vi = vi −u√
T

and ϒ= ∇xρi
ρi
− ∇xρn

ρn
+ Fn−Fi

T
.

Finally, as Y ir = Se, we obtain (still using the notations vi ′ = vi − (vi −
vn,
)
 and vn

′ =vn+ (vi −vn,
)
):

[
Linφ

i
1+

(
f i0

)−1
Qin

0

(
f i0 , f

n
1

)]
(vi)

=
∫

IR3×S2
BB
	 (vi −vn,
) f n0 (vn)

×
[
φi1(vi

′)+φn1 (vn′)−φi1(vi)−φn1 (vn)
]
dvn d


= (vi −u) ·ϒ+ 1
2
B(Vi) :σ(u)+A(Vi) · ∇xT√

T
+ Sin [φi1(vi)−φn1 (vi)].

(73)
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Let us set for simplicity ψ=φi1−φn1 . As φn1 satisfies

Lnnφ
n
1 (vi) =

∫

IR3×S2
BB
	 (vi −vn,
) f n0 (vn)

× [
φn1 (vi

′)+φn1 (vn′)−φn1 (vi)−φn1 (vn)
]
dvn d


= 1
2
B(Vi) :σ(u)+A(Vi) · ∇xT√

T
,

it remains to find ψ such that:

[Linψ−Sinψ ] (vi) = (vi −u) ·ϒ.

Now, as the right hand side of this equation is an odd function of Vi , and
Sin � 0, we know from Lemma 4.4 that this equation admits at least one
solution (and exactly one if Sin �=0). Moreover, with arguments similar to
those developed in ref. 27 (and in ref. 18 for the Lorentz operator), we can
show that ψ has to be of the following form: ψ̄(|vi−u|)(vi−u) ·ϒ, where
the function ψ̄ is isotropic with respect to the velocity variable vi − u;
this solution also satisfies the orthogonality relation

∫
IR3 ψ(v)Mu,T dv= 0,

which gives (56) and (53).

Proof of Lemma 5.5. The aim, in this lemma, is to look for the
second order correction f e2 =f e0 φe2 for the electrons. Referring to the defi-
nition of Qen

0 given in Lemma 4.1, we first observe that Qen
0 (f

e
0 , f

n
2 ) is

equal to zero. In a similar way, Lemma 4.2 implies that Qei
0 (f

e
0 , f

i
1 )= 0.

Consequently, Eq. (57) reads Lenφe2=ϕe2 with Len defined in (20) and

f e0 ϕ
e
2 = ∂tf e0 +

[
ve ·∇x +Fe ·∇ve

]
f e1

−Qen
0 (f

e
1 , f

n
1 )−Qen

1 (f
e
1 , f

n
0 )−Qen

1 (f
e
0 , f

n
1 )−2Qee(f e1 , f

e
0 )

−Qei
0 (f

e
1 , f

i
0 )−LQe,ir (φe1, φ

i
1, φ

n
1 )−Qen

2 (f
e
0 , f

n
0 )−Qei

1 (f
e
0 , f

i
0 ) .

Referring to Lemma 4.3, point (ii), we know that if such a solution φe2
exists, then the right hand side ϕe2 has to satisfy the following orthogonal-
ity relation:

∫

IR3
ϕe2(ve)f

e
0 (ve) dve=0. (74)
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We now compute the different terms involved in this relation. First, mass
conservation implies that (see Lemma 4.1.iv and 4.2.ii)

∫

IR3

(
Qen

0 (f
e
1 , f

n
1 )+Qen

1 (f
e
1 , f

n
0 )+Qen

1 (f
e
0 , f

n
1 )

+ Qei
0 (f

e
1 , f

i
0 )+Qen

2 (f
e
0 , f

n
0 )+Qei

1 (f
e
0 , f

i
0 )
)
dve=0,

and the conservative form of Qee also yields to

∫

IR3
Qee(f e1 , f

e
0 ) dve=0.

Referring to the definition of LQe,ir in Lemma 4.6, simple computations
show that:

∫

IR3
LQe,ir (φe1, φ

i
1, φ

n
1 ) dve=ρi Y ir ,

with Y ir given in (55). Consequently, since we have

∫

IR3
Fe ·∇vef e1 dve=0,

the solvability condition (74) reduces to

∫

IR3

(
∂tf

e
0 +ve ·∇xf e1

)
dve=ρi Y ir , (75)

which gives:

∂tρe+∇x · (ρeue1)=ρi Y ir , (76)

where we have set:

ρeu
e
1 =

∫

IR3
vef

e
1 dve.

Now, using the expression (52) of f e1 , we get: ue1 = u+uJ , with uJ defined
by (59)–(60). Moreover, ρe being connected to ρn, ρi and Te by the Saha
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law (41), we get from the evolution Eqs. (49) and (54) on the densities ρn
and ρi :

∂tρe = ρe
[
−u

(∇xρn
ρn
− ∇xρi

ρi

)
−Y ir + ∂tTe 3Te+2∆

2T 2
e

]
, (77)

and also

∇xρe = ρe
[∇xρn
ρn
− ∇xρi

ρi
+∇xTe 3Te+2∆

2T 2
e

]
, (78)

so that (76) yields to the following equation on Te:

∂tTe+u·∇xTe+ 2T 2
e

3Te+2�

(
div(u)+ 1

ρe
div(ρeuJ )

)
=
(

1+ ρi
ρe

)
2T 2
e

3Te+2∆
Y ir.

(79)

This concludes the proof.

Proof of Theorem 5.6. This result is a direct consequence of Lem-
mas 5.1 to 5.5.
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